A tropism is the innate ability of an organism to turn or move in response to a stimulus. As opposed to a learned ability, innate reactions are genetically programmed. Organisms with a tropism will naturally turn toward a stimulus. A stimulus can be any signal from the environment, and individual tropisms are often named after the stimulus that causes the movement. In a positive tropism the animal will move toward the stimulus. In a negative tropism, the animal will move away from the tropism. Certain stimuli become genetically engrained because they are always beneficial or always detrimental to an organism. A movements caused by a tropism is called a taxis. Like us on Facebook:- https://www.facebook.com/Tupoints-161... Website:-http://tupoints.com For any query and explanation please write [email protected]" "Thigmotropism:-There are a few different ways that different climbing plants use to cling to surfaces and to change their own shape. The two examples of thigmotropism that will look at are the presence of tendrils, and the clinging of plants to surfaces using their roots. chemotropism:-These simple organisms will simply move towards or away from stimuli in the direction that has been most evolutionarily rewarding to their ancestors. In higher organisms, certain chemicals still attract animals, though they may not always move towards it. In other words, while they have the tropism, they do not always exhibit taxis. For instance, sharks have a positive chemotropism for blood, or they tend to move towards blood. However, a shark will often inspect a meal or test it before devouring the prey, showing that other mechanisms can override a tropism. hydrotropism:-The survival of terrestrial plants depends upon the capacity of roots to obtain water and nutrients from the soil. Directed growth of roots in relation to a gradient in moisture is called hydrotropism and begins in the root cap with the sensing of the moisture gradient. Even though the lack of sufficient water is the single-most important factor affecting world agriculture, there are surprisingly few studies on hydrotropism. Recent genetic analysis of hydrotropism in Arabidopsis has provided new insights about the mechanisms that the root cap uses to perceive and respond simultaneously to moisture and gravity signals